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Lattice-based Loop

Nest Tilings for Stencil

Computations

Rob F. Van der Wijngaart and Michael Frumkin*

1 Introduction

A common method for improving performance of stencil operations on structured

multi-dimensional discretization grids is loop tiling. Tile shapes and sizes are usually

determined heuristically, based on the size of the primary data cache. We provide
a lower bound on the numbers of cache misses that must be incurred by any tiling,

and a close achievable bound using a particular tiling based on the grid interference

lattice. The latter tiling is used to derive highly efficient loop orderings.
The total number of cache misses of a code is the sum of (necessary) cold

misses and misses caused by elements being dropped from the cache between suc-

cessive loads (replacement misses). Maximizing temporal locality is equivalent to

minimizing replacement misses. Temporal locality of loop nests implementing sten-
cil operations is optimized by tilings that avoid data conflicts. We divide the loop

nest iteration space into conflict-free tiles, derived from the cache miss equation [5].

The tiling involves the definition of the grid interference lattice---an equivalence
class of grid points whose images in main memory map to the same location in

the cache--and the construction of a special basis for the lattice. Conflicts only

occur on the boundaries of the tiles, unless the tiles are too thin. We show that the

surface area of the tiles is bounded for grids of any dimensionality, and for caches of

any associativity, provided the eccentricity of the fundamental parallelepiped (the

tile spanned by the basis) of the lattice is bounded. Eccentricity is determined by

two factors, aspect ratio and skewness. The aspect ratio of the parallelepiped can
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be bounded by appropriate array padding. The skewness can be bounded by the

choice of a proper basis. Combining these two strategies ensures that pathologically
thin tiles are avoided.

They do not, however, minimize replacement misses per se. The reason is that
tile visitation order influences the number of data conflicts on the tile boundaries.

If two adjacent tiles are visited successively, there will be no replacement misses on

the shared boundary. The iteration space may be covered with pencils larger than
the size of the cache while avoiding data conflicts if the pencils are traversed by a

scanning-face method. Replacement misses are incurred only on the boundaries of

the pencils, and the number of misses is minimized by maximizing the volume of

the scanning face, not the volume of the tile.

We present an algorithm for constructing the most efficient scanning face for a

given grid and stencil operator. In two dimensions it is based on a continued fraction

algorithm. In three dimensions it follows Voronoi's successive minima algorithm

[10]. We show experimental results of using the scanning face, and compare with

canonical loop orderings.

Related work

A number of techniques for improvements in the usage of data caches have been

developed in recent years. The techniques include improvements in data reuse (i.e.

temporal locality) [2, 5, 6, 12], improvements in data locality (i.e. spatial locality)

[12], and reductions in conflicts in data accesses [5, 6, 8, 9]. In practice, these

techniques are implemented through code and data transformations such as array

padding and loop unrolling, tiling, and fusing. Tight lower and upper bounds on

memory hierarchy access complexity for FFT and matrix multiplication algorithms

are given in [7]. However, questions concerning bounds on the number of cache

misses, and how closely current optimization techniques approach those bounds for

stencil operators, remain open.

2 Cache model and definitions

We consider a single-level, virtual-address-mapped, set-associative data cache, or-

ganized in a sets of z lines of w words each. Hence, it is characterized by the param-

eter triplet (a, z, w), and its size S equals a * z • w words. A cache with parameters

(a, 1, w) is/ully associative, and with parameters (1, z, w) it is direct-mapped.
The cache is used as a temporary fast storage of words used for processing. A

word at virtual address A is fetched into cache location (a(A), z(A), w(A)), where

w(A) = A mod w, z(A) = (A/w) mod z, and a(A) is determined according to a

replacement policy (usually a variation of least recently used). The replacement

policy is not important within the scope of this paper.
If a word is fetched, then w - 1 neighboring words are fetched as well to fill

the cache line completely. In practice, a, z, and w are often powers of 2 in order

to simplify computation of the location in cache. For example, the MIPS R10000

processor, for which we report some measurements in Section 5, has a cache with

parameters (2,512,4), which makes S equal to 4K double precision words, or 32KB.
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A cache miss is defined as a request for a word of data that is not present

in the cache at the time of the request. A cache load is defined as an explicit

request for a word of data for which no explicit request has been made previously

(a cold load), or whose residence in the cache has expired because of a cache load
of another word of data into the exact same location in the cache (a replacement

load). The definitions of cold and replacement loads are analogous to those of cold

and replacement misses [5], respectively, and if w equals 1 they completely coincide.

If the computation of a stencil operator containing ]K] points features ¢ cache

misses and # cache loads, it can easily be shown [3] that the following interval

inequality holds: ]K[ -I _< _ < w, which can be used to bound the number of cache
misses in terms of the number of cache loads. For codes with good spatial locality

we typically have/_ _ we.

We assume throughout that no useful data is in the cache at the beginning of
the stencil computation, which is realistic for most scientific programs.

3 A lower bound for cache loads for local operators

In this section we consider the following problem: for a given d-dimensional struc-

tured grid and a local stencil operator K, how many cache loads must be incurred

in order to compute q = Ku, where q and u a:re two arrays defined on the grid. We

provide a lower bound which asserts that, regardless of the order in which the grid.
points are visited to c:ompute q, at least/_ cache loads have to occur.

The following terminology describes the operator K. The vectors kx, ... ,k_,

defined such that q(x) (the value Of q at thegrid point identified by the vector x) is

a function of the v/_iues u('x + kl), ... ,u(x + ks), are called stencil vectors. Locality

of K means that the stencil vectors are contained in a cube {k[ ]ki I < r,i = 1,..., d}

(r is called the radius of K, and 2r+ 1 its diameter). In this section we assume

that K contains only the star stencil (i.e. the {0, el,..., ed,--el,...,--ed} stencil).
A lower bound on the number of cache loads for the star stencil will give a lower

bound for any stencil containing it.
Let q be computed in the K-interior R of a rectangular region (a grid) G.

We assume that computation of q is performed in a pointwise fashion, that is, at

any grid point the value of q is computed completely before computation at another

point is started. In order to compute the value of q at a grid point x, the values of u

at the neighbor points of x must be loaded into the cache (a point y is a neighbor of
x if y-x is a stencil vector of K). Ifx is a neighbor of y and u(y) has been loaded

in cache to compute q(z) but is dropped from the cache before q(x) is computed,

then u(y) must be reloaded, resulting in a replacement load associated with x.
It can be shown that

)- l + (1 - )caS -z_-_ , (1)

where IG] is the size of the grid and I its smallest dimension. S is the size of the
cache in words, and ca a constant that depends only on the dimensionality of the

array: ca = 1/(d(2d + 1)2d+2). The leading term of [G] in (1) represent inevitable
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cold loads. The proof, given in [3], revolves around covering the iteration space R

with a disjoint union of k grid regions Ri, in such a way that q is computed at all

points of Ri before it is computed at any point of Ri+l, see Figure 1. Bij is the

set of points in Rj which are neighbors of Ri. If we assume that all interior points

G

R 4

Bl

B_

Figure 1. The boundaries Bij of already computed values of q in a sequence

of regions Ri. Reloading of some values of u on the boundary of R3 (heavy lines)

results in at least ma-x([B311 + IB32[ - S,O) cache loads.

of/_i can be computed without cache conflicts, the only replacement loads occur

for points on the boundary between R, and Ri-l. The number of such loads is

minimized by choosing Ri as large as possible for :a given surface area _Ri. For the

star stencil this is achieved by the diamond-shaped standard octahedron.

In general, assuming that the cache associativity a is larger than the diameter

of the operator K, the order of this lower bound can not be improved, as shows the

following example (the bound is valid for a cache with any associativity, including a

fully associative cache). Let the spatial extents of a two-dimensional grid be nl and

n2, respectively, with nl equal to kS and n2 arbitrary, and perform calculations of

the star stencil (i.e. r = 1) in the following order:

do i = 0, k,a-1

do j = 2, n2-1
do il = max(2,1+i*(S/a)), min(n1-1,(i+l)*(S/a))

q(il,j) --u(il,j) + ...
end do

end do

end do

Since nl equals kS, allvaluesofq and u having the same value of the second

index are mapped intothe same cache locationwithin a set.Since a exceeds 2r + 1,

none of the valuesrequired for the computation of q willbe replaced in the cache,

except those at a distance r around the linesdefined by £1 = i*S/a. The total

number of elements of u loaded into the cache for execution of thisloop nest will

thereforebe nln_ + (n2 - 2)2r(ka - 1) - 4,which equals nln_(1 - 2/ni + 2a(1 -

2/n2)/S). Similarexamples can be given in higher dimensions.
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4 An upper bound for cache loads for local
operators. Cache fitting algorithm

To obtain an upper (= achievable) bound we present a cache fitting algorithm which

incurs a small number of replacements. We find a set P of cache conflict-free indices

of u and calculate Ku at the points of P. Then we tile the index space of u with P

to minimize the total number of replacements. For the analysis we assume a cache

associativity of one, which is the worst case for replacement loads.
Let L be a set in the index space of u having the same image in cache as the

index (0,..., 0), Figure 2. L is a lattice in the sense that there is a generating set

{hi}, i = 1,..., d, such that L is the set of grid points {(0,..., O) + _-,_=I xibi I xi E

Z}. We call this the interference lattice of u. It can be defined as the set of all

vectors (il,... ,ia), such that

(il +nli2 +nln2i3 + "" +nl ...na-lid) mod S = 0. (2)

In [5] this lattice is defined as the set of solutions to the cache miss equation.
Let P be a fundamental parallelepiped x of L. Let F be a face of P (see Figure

2), and let b be a basis vector of L such that P = {f + xb[ f E F, 0 _< x < 1}.

Then shifts F + (k/g)b, k .... , -1, 0, 1,... contain all integer points of a pencil

Q, with Q = {f + xblf E F,x is any number} for an appropriate value of g (see

[3]). The values of q at the points of Q can be computed without replacing reusable

values of u, except at a distance of r or less from the boundary of Q. We _sume

that the extent of P in the direction of b is big enough to allow to compute q

on F without replacements. It may be impossible to satisfy this condition when.
the shortest vector in L is shorter than the diameter of K divided by the cache

associativity. Lattices with short vectors are discussed in Section 5. The associated

grids are called unfavorable.

The Cache Fittin9 Algorithm for computing q is as follows (see Figure 2); here

K(R) is the set of points where u must be available in order to compute q at all

points of R (i.e. the K-extension of R):

set w-- (l/g) b

do Q = Qmin, C_ax

determine face F inside pencil Q

do k = kmin, kmax

load in cache all values of u inside K(F + k* w)

compute q at F + k * w
end do

end do

The parameters Qmin, Qrnax, kmin and kmax are determined such that the

scanning face F sweeps out the entire grid. Whenever a point is not contained in

the grid, it is simply skipped. Since the scanning face, moving in the direction of

b with step g, passes through all integer points of Q, the algorithm computes the

values of q at all points inside Q.

IA fundamental parallelepiped of a lattice L is a set of points {)-_=1 xibi l0 _< x, < 1} for any

basis {hi} of L.

--
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Figure 2. The Interference Lattice. Cache fitting set F + kw, k E Z,

sweeps across pencil Q in the direction of b. Only values of u at points at a distance
r or less from the pencil boundaries t31 and 132 will be replaced in the cache when K

is evaluated inside of Q.

Replacements misses can occur only at points at a distance of r or less from
the boundaries of the pencils. For each of these points at most s replacements need

to take place, where s, the size of the stencil, is defined by s --- [K[ < (2r + 1)d..

So the number of replacements will not exceed r(2r + 1)dA, where A is the total

surface area of all pencils.
To minimize A we choose P so that Q has a good surface-to-volume ratio. It

can be shown that, for the proper choice of P, no more than p cache loads result

when using the cache fitting algorithm:

! 1

< IGI (1 + ecdS-'_), (3)

where c_ = 2dr(2r + 1)d2 d(d-t)/4. The eccentricity e of the basis of the interference

lattice is defined by e = max(l[b,ll/llbjll). The proof, given in [3], makes use of
the fact that every lattice has a reduced basis whose geometrical quality is bounded

from below by a factor that only depends on the dimensionality of the grid.

In [3] we show that there exist grids whose interference lattices feature eccen-
tricities that are independent of S (provided that S is a prime power, which is true

in most practical cases). Grids whose dimensions are the same modulo S share the

same interference lattice. Hence, any grid can be extended (padded) to yield one

that has a lattice whose eccentricity is low. For these favorable lattices the relative

gap between upper (3) and lower bound (1) goes to zero as S increases. When the

cache associativity exceeds the diameter of K, this gap can be closed. In that case

a parallelepiped, built on a reduced basis of the interference lattice of the array

indices with xa = O, can be swept in the d th coordinate direction (see end of Section

3).
In general, the cache fitting algorithm gives full cache utilization, in contrast to

the algorithm for finding grid-aligned parallelepipeds devoid of interference lattice

--0
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points, as proposed in [5]. See Table 2 in Reference [5], where the sizes of blocks
without self interference are approximately 20% smaller than S.

5 Unfavorable array sizes

We compare the measured number of cache misses of our cache fitting algorithm
with that of the compiler-optimized code for the corresponding naturally ordered

loop nest on a MIPS R10000 processor (SGI Origin 2000). For comparison we
choose the common 13-point star stencil and a test set of three-dimensional grids of

sizes 40 < nl < 100, n2 = 91, and n3 = 100 (the value of the second dimension was
chosen to show a typical picture; that of the third dimension is irrelevant). Measured

cache misses for both codes are shown in Figure 3. The thin line corresponds to

the naturally ordered nest, optimized by the SGI Fortran compiler. The heavy

2oo0

1500

1000

2
500

natural loop order , /

4

T I

40 60 80 100

first array dimension (n_)

Figure 3. Measured cache misses on MIPS RIO000 processor for 40 <

nl < 100, n2 = 91 for 13-point star stencil.

line corresponds to our cache fitting algorithm. A typical ratio between the two is

3.5. The large fluctuations exhibited by the cache fitting algorithm correspond to

grids with short lattice vectors (nl = 45 and nx = 90 yield shortest vectors (1, 0, 1)

and (2, 0, 1), respectively). For such unfavorable grids the cache misses incurred by

the cache fitting algorithm may outnumber those of the compiler-optimized loop

nest. The program was compiled with options "-133 -LN0:prefetch=0," using the

MIPSpro f77 compiler, version 7.3.1.1m. We disabled the prefetching compiler

--(9
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optimization. Otherwise the number of cache misses would increase significantly,

because the compiler does aggressive prefetching to try to reduce execution time.

The upper bound for the cache loads from the previous section would suggest
that the number of replacement misses will increase in case the interference lattice

has a very short vector. Very short means that the length is smaller than the
diameter of the operator divided by the cache associativity. In this case the self

interference increases significantly.
To demonstrate these unfavorable grids we again choose the 13-point stencil

and force computations in the nest to follow the natural order. Figure 4 shows

the correlation between spikes in the number of cache misses and the presence

of a very short vector in the lattice. We call these lattices unfavorable for cache

A)

n 2

'if" :.
•, , .Jr •

"2 t • / • /.- I
! • /" /-, ",

I It i/," '- i

Figure 4. Plot A shows measured fluctuations of cache misses (above 15_

of the upper bound). Plot B shows the interference lattices with short (less than 8

in the L 1 norm) vectors. Array sizes are 40 < hi, n.2 < 100. The plots can be fitted

well by hyperbolae defined by nln2 "=- ½kS, k = 1,2,3,4, meaning that arrays with

unfavorable size are those whose z-slices are (close to) multiples of half the cache
size. The horizontal line in Plot A shows the position of the graph from Figure 3.

utilization. Arrays having such lattices should be avoided on the target machine.
When the shortest vector of the interference lattice is shorter than the diameter

of the operator, the number of cache misses sharply increases. The application

developer should avoid such unfavorable array sizes, and compilers should avoid

these sizes using appropriate padding. Note that similar unfavorable cache effects

are mentioned in [1].

6 Improvements to cache fitting algorithm

While the cache fitting algorithm described in Section 4 is quite effective in reducing

replacement loads, it is not optimal. In deriving it we ignored the order in which

1
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the fundamental parallelepipeds in the grid are visited. Hence, we ignored the

replacements that can be avoided by visiting adjacent parallelepipeds, that is, by

letting the scanning face traverse pencils unidirectionally. No replacements occur
for any point inside the pencil, only on its boundary. Hence, we should minimize

the surface area of the pencil, not that of the parallelepiped, by maximizing the

number of points in the scanning face. This result suggests how to pad arrays to

improve cache performance: the padding should be organized in such a way that the

shortest vector in the lattice is not too short, though short enough to minimize the

number of pencils (large index of scanning face F). The sweeping is organized such

that pencils are as wide as possible (i.e. the smallest total number of pencils), while

avoiding tiles that are thinner than the diameter of the stencil operator divided by

the cache associativity.
An second suboptimal property of our original cache fitting algorithm is that

it uses non-Cartesian tiles. This results in complicated loop bounds and in reduced

reuse of data in the case of non-trivial cache line lengths. More practical tilings are

grid-aligned, such as that proposed by Martonosi [5], which attempts to maximize
the volume of conflict-free Cartesian cells. This strategy can be improved in a way

similar to that described above by minimizing the surface area of the union of all

tiles that are adjacent in the tile visiting scheme.

Combining the ideas of Cartesian tiles and maximizing scanning face area,

we propose the following methods to improve cache reuse in two and three spa-
tial dimensions. In two dimensions choosing conflict-free rectilinear tiles of a given

minimum width and maximum height can be done with a continued fraction algo-
rithm, illustrated by Figure 5. Starting point is any pair of lattice vectors vl,v2.

_! . v3 ,LatticePoints]

Figure 5. Continued fraction algorithm for choosing optimal tiles in two

dimensions, passing through successive minima v_ , v2, v3, v4 and appropriate tiles

Tx , T2, T3

In a rapidly converging sequence of O(log S) steps that takes us through successive

minima (indicated by v3, v4, etc.), a parallelepiped of maximal height, and width at

least d/a, is constructed. Multiplying it by a factor of 1/2 results in a parallelepiped
that can be used for conflict-free tiling of the grid, cf. [4], Section 3. It follows from

a theorem by Minkovski (see also [4]) that the volume of any tile is at least S/2.

This is substantially less than the maximal volume of conflict-free tiles, but that

__
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does not matter, since we are using the scanning face method.

In three dimensions the optimal rectilinear tile can be found by application

of the Voronoi algorithm [11]. This algorithm, in contrast to the continued frac-
tions algorithm, does involve a search over a space of several alternatives for each

step in the scanning face maximization process. However, the exection time of

Voronoi algorithm can still be bounded by a polynomial in log S. The volume of

tiles generated in this way is at least S/6.

7 Conclusions and future work

We have demonstrated tight lower and upper bounds for cache misses for the cal-

culation of explicit operators on structured grids. Our lower bound is valid in the

general case of fully associative caches, and is based on a discrete isoperimetric

theorem. Our upper bound is based on a cache fitting algorithm which uses the

fundamental parallelepiped of a special basis of the interference lattice to fit the data

in the cache. The upper bound assumes that the shortest vector in the interference

lattice is not too short. It can be shown [3] that there are .favorable grids whose

interference lattices have this property, and that any grid can be padded to become
favorable. We have also shown that the presence of a very short vector in the lattice
correlates with fluctuations of actual cache misses for calculation of a second-order

explicit operator on three-dimensional grids. The fluctuations occur on grids with
unfa-¢orable sizes, i.e. on those whose product of the first two dimensions is (close

to) a multiple of half the cache size.
We also determined that the performance of the cache fitting algorithm can be

improved by selecting not the tile with the largest surface-to-volume ratio, but that

which has the largest cross section, provided it is not pathologically thin. Adjacent
tiles are visited using a scanning face method, which avoids cache loads on tile

boundaries in the scan direction. Further practical improvements can be obtained

by selecting not the skewed tiles that follow from the cache fitting algorithm, but

orthogonal tiles, using a continued fraction (2D) or Voronoi's successive minima

(3D) algorithm.
Our results can be extended straightforwardly to stencil computations with

multiple rigth hand sides, to non-scalar grid arrays, and to certain implicit stencil

computations [3].
In a future study we plan to extend the results of this paper to more general

implicit operators, and to tighten the lower bound for cache loads. We also plan

to enhance the presented results by taking into account a secondary cache and
TLB, and to formulate bounds for cache misses more directly than through the

determination of cache loads.
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